期刊介绍
期刊导读
- 03/13上海市农业农村委员会事业单位工作人员公开招
- 03/13数据分析,给农业腾飞插上翅膀!
- 03/13山东省农业农村厅考察组到惠民县桑落墅镇开展
- 03/13市农业农村局开展植树节生态文明建设插花艺术
- 03/13农业农村部:“十三五”期间农民收入持续较快
基于计算机辅助控制与技术的农业智能灌溉系统
随着农业生产技术的不断深入发展和农业结构的不断调整,农业智能化灌溉技术在农业灌溉中的应用也进一步普及,对技术的要求也越来越高。利用计算机辅助控制技术与PLC技术结合建立起的农业智能化灌溉系统,解决了传统灌溉技术中效率偏低、管理偏难等问题,进一步提升了农业智能化灌溉系统的应用效率。
1 系统总体设计
农业智能灌溉系统主要由计算机辅助控制系统(上位机)、PLC(下位机)、A/D转换器(模数转换器)、土壤湿度感应器、执行控制模块、灌溉设备和报警设备构成。工作原理框图如图1所示。
该系统工作时,先由土壤湿度传感器取值,将土壤湿度值通过A/D转换模块将模拟信号转换成数字信号后传输给PLC,之后PLC将信号传给计算机辅助控制设备,计算机辅助控制设备经过自动调节或者人工手动控制后,将调整后的参数传回给PLC,由PLC通过PID计算程序发出命令控制对应的执行控制模块启停灌溉设备,实现对灌溉的智能运作[1-3]。
本系统的核心设备为由上位机和下位机两个部分组成。上位机主要采用计算机辅助控制系统,设置对应的操作控制界面,可对控制参数进行设置,可实时监控下位机,可对相关数据进行查询等;下位机主要采用PLC控制器,主要功能用于接收上位机的控制操作指令、接收土壤湿度传感器模拟量输入信号等,并根据系统的要求,计算、处理和输出对应的命令,驱动外部相关控制设备。
2 系统硬件设计
系统硬件主要由计算机辅助控制系统、PLC控制器、A/D转换器、土壤湿度传感器、执行控制模块、灌溉设备和报警设备构成。
2.1 计算机辅助控制系统(上位机)
作为系统核心的控制组件,计算机辅助控制系统在硬件上须具备稳定的硬件工作环境,在控制软件上能对灌溉系统各项指标进行调节和设定,需支持主流的连接协议,实现对设备的调控、监视、数据采集、报表汇总等功能。
2.2 PLC控制器(下位机)
作为系统的核心执行组件,PLC必须具备稳定的工作状态,多节点、多级数采集传输模式,支持主流的连接协议,配备足够的输入端子和输出端子,同时可外接相应扩展模块,尽可能多收集设备的输入信号传输给上位机,满足系统的调整和控制要求。
图1 智能灌溉控制系统工作原理框图
2.3 土壤湿度传感器
新型的土壤湿度传感器可利用电磁脉冲原理,根据电磁波在介质中的传播频率来测量土壤的表观介电常数,得到土壤容积含水量,具有简便安全、快速准确、定点连续、自动化、宽量程和少标定等特点。
2.4 A/D转换器(模数转换器)
根据本系统对系统输入/输出信号的要求,需将现场由土壤湿度传感器检测产生的连续模拟量信号转换成PLC识别的可以接收的数字量信号。为确保转换的准确率,应选取数字量位数多、分辨率高、功耗低的设备型号。
2.5 执行控制模块
执行控制模块,主要用于控制灌溉设备的启停。目前常见的执行控制设备一般为电磁阀,其所具备的高安全性、适用性和可靠性是控制模块必备的工作特性。
2.6 灌溉设备
用于农业的灌溉设备有很多类型,如水泵、滴灌管、微喷头、微喷带等,根据不同的应用场景,应按实际选择不同的灌溉设备,以利于农作物的灌溉作业。
在选择灌溉设备时,要与执行控制模块所选择的设备配合使用。
2.7 报警设备
报警设备接收上位机发出报警信号,例如湿度过低、灌溉时间过长等,可以声、光等形式发出报警信息,提醒管理人员及时处理。
3 系统软件设计
软件设计方面,由上位机计算机辅助控制软件和下位机PLC执行软件构成。程序的核心思想是由上位机负责对参数进行调节,下位机接收上位机的调节指令,通过PID算法输出执行参数实现对灌溉设备的控制。
3.1 上位机软件设计
智能灌溉系统的控制由上位机进行。软件系统采用图形化的编程语言,如Microsoft Visual C++,能与硬件进行直接通信,其图形化的编程特点可建立虚拟化的仪器图表,提取下位机的PID参数并可在图形界面上显示和调节。
软件的设计思想是将下位机所获取的土壤传感器检测土壤湿度含量,与程序设定土壤湿度信号最小值和最大值相比较,根据偏差量向灌溉设备发出“开”“关”指令,保证土壤湿度达到设定范围,并且当土壤含水量低于设定最小值或最大值时向报警装置发出报警指令,使报警装置启动,及时进行告警。
文章来源:《农业与技术》 网址: http://www.nyyjszzs.cn/qikandaodu/2021/0313/1517.html
上一篇:机械自动化技术应用与发展前景探索
下一篇:内燃机机械增压技术与性能评价分析